Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO3/g-C3N4 hybrid nanocomposite with superior electrochemical and photocatalytic performance.

نویسندگان

  • Sulagna Patnaik
  • Gayatri Swain
  • K M Parida
چکیده

Herein, a novel Cu-MoO3/g-C3N4 hybrid nanocomposite was successfully synthesized by a two-step strategy of one-pot pyrolysis followed by the impregnation method. The structure, phase, morphology and electronic environment of MoO3, g-C3N4 and Cu in the composite were determined by various characterization methods. The oxygen vacancies of MoO3 were ascertained by UV-DRS, Raman, and XPS analysis. The formation of the heterostructure was characterised by electrochemical measurements. The photocatalytic performance of the composite was investigated by the water reduction reaction and the reduction of an important inorganic pollutant, Cr(vi). In the presence of Cu NPs, the H2 evolution of the MoO3/g-C3N4 hybrid was found to be 652 μmol h-1 with an apparent energy conversion efficiency of 13.46%, and up to 95% of Cr(vi) was reduced using citric acid as a hole scavenger. The remarkably enhanced photocatalytic performance was attributed to the combined effect of the double Z-scheme mechanism and defective MoO3. The in situ formation process of the MoO3/g-C3N4 hybrid followed a direct Z-scheme charge transfer by generating a great number of defects at the solid-solid interface, similar to that of a conductor, and offered low electrical resistance, whereas loading of Cu NPs built up an indirect Z-scheme charge transfer to establish the double Z-scheme charge transfer mechanism. This hybrid material produces a photocurrent density of 12.1 mA cm-2, in good agreement with the photocatalytic activity. This study highlights the facilitation effect of MoO3 due to oxygen vacancies and charge transfer through the double Z-scheme mechanism to open up a new window in the field of 2D nanostructured photocatalytic materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors

High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...

متن کامل

A g-C3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator.

A g-C3N4/nanocarbon/ZnIn2S4 (CN/C/ZIS) nanocomposite with enhanced photocatalytic H2 production performance has been successfully synthesized. Based on the experimental results, for the first time, it has been demonstrated that nanocarbon could be integrated into a Z-scheme photocatalytic system and acted as an excellent solid electron mediator.

متن کامل

Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation.

Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longe...

متن کامل

Simple and Large Scale Construction of MoS2-g-C3N4 Heterostructures Using Mechanochemistry for High Performance Electrochemical Supercapacitor and Visible Light Photocatalytic Applications

The design of heterojunctions for efficient electrochemical energy storage and environmental remediation are promising for future energy and environment applications. In this study, a molybdenum disulfide-graphitic carbon nitride (MoS2-g-C3N4) heterojunction was designed by applying simple mechanochemistry, which can be scaled up for mass production. The physical-chemical and photophysical prop...

متن کامل

Fabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light

We report highly efficient magnetically recoverable photocatalysts through combination of Fe3O4/ZnO with AgI and Ag2CO3, as narrow band gap semiconductors. The resultant photocatalysts were characterized by XRD, EDX, SEM. TEM, UV–vis DRS, FT-IR, PL, and VSM instruments. Under visible-light illumination, the nanocomposite with 1:6 weight ratio of Fe3O4 to ZnO/AgI/Ag2CO3 exhibited superior activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 10 13  شماره 

صفحات  -

تاریخ انتشار 2018